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1
DYNAMIC IMAGE RECONSTRUCTION
WITH TIGHT FRAME LEARNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional appli-
cation Ser. No. 61/710,162 filed Oct. 5, 2012 which is
incorporated herein by reference in its entirety.

TECHNOLOGY FIELD

The present invention relates generally to methods, sys-
tems, and apparatuses for reconstructing an image using a
tight frame learned from one or more images. The disclosed
methods, systems, and apparatuses may be applied to, for
example, to increase the quality of Magnetic Resonance
Imaging (MRI) applications such as Dynamic MRI, where
acquired data is undersampled.

BACKGROUND

In recent years, Dynamic MRI has gained popularity and
acceptance in clinical settings due to its ability to reveal
spatial and temporal information in cardiovascular and neu-
roimaging studies. One of the challenges of dynamic MRI is
that it requires a relatively long acquisition time compared
to other medical imaging modalities such as X-ray CT. In
order to fit the data acquisition time inside the motion cycles
of the imaging subject, the acquired data is typically under-
sampled.

The undersampling inherent in dynamic MRI may be
addressed through the use of Compressed Sensing (CS)
techniques. Using CS, a signal may be represented using a
few nonzero coeflicients of a dictionary or a sparse trans-
form. Both the dictionary and the transform can be either an
orthonormal system or an over-complete system. However,
the latter is generally preferable because it possesses the
advantage of sparsifying the signal under a redundant sys-
tem. Fixed tight frame systems, such as ridgelet, curvelet,
bandlet, and shearlet, are over-complete systems that may be
suitable for a dictionary or sparse transform. However, a
fixed tight frame may not be optimal in applications where
there is variety among the subject being imaged. For
example, in medical applications, a fixed tight frame may
produce poor results because the texture in a medical image
varies based on, for example, the tissue type being imaged
or the acquisition protocol.

SUMMARY

The present invention, as described in various embodi-
ments herein, addresses the challenging task of image recon-
struction based on undersampled k-space data. The methods,
systems, and apparatuses described herein learn a tight
frame using a reference frame. Thus, the limitations of fixed
tight frame systems are addressed by learning the tight frame
directly from the data itself.

According to some embodiments of the present invention,
a computer-implemented method for learning a tight frame
includes at least five steps. The ordering of these steps may
vary across the different embodiments and variations of each
step may be applied in each embodiment. First, under-
sampled k-space data is acquired over a time period using an
interleaved process. In one embodiment, the interleaved
process samples lines of k-space data at a predetermined
sampling rate. Second, an average of the undersampled
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k-space data is determined. For example, in one embodi-
ment, the average of the undersampled k-space data is
determined in a temporal direction based on the time period.
Third, a reference image is generated based on the average
of the undersampled k-space data. In one embodiment, the
reference image is generated by applying a Fourier trans-
formation to the average of the undersampled k-space data.
Fourth, a tight frame operator is determined based on the
reference image. In one embodiment, the tight frame opera-
tor is further determined based on one or more additional
reference images. Fifth, reconstructed image data is gener-
ated from the undersampled k-space data via a sparse
reconstruction which utilizes the tight frame operator. For
example, in one embodiment, the tight frame operator is
used as a regularization term in the sparse reconstruction.

Various methods of determining a tight frame operator are
used by embodiments of the present invention. In some
embodiments, determining a tight frame operator based on
the reference image includes determining a reference vector
based on the reference image. In one embodiment, reference
vector is determined by concatenating columns of the ref-
erence image vertically together to yield the reference
vector. Next, one or more tight frame filters are initialized
using an existing tight frame system. Then, an iterative
process is performed to update the tight frame filters. For
example, in one embodiment, the iterative process includes
defining an analysis operator based on the one or more tight
frame filters, determining a coeflicient vector comprising
tight frame coefficients by applying the analysis operator to
the reference vector, updating the coefficient vector by
applying a hard thresholding (or soft thresholding) operator
to the tight frame coefficients, and updating the tight frame
filters based on the updated coefficient vector. In one
embodiment, the tight frame filters are updated using a
Singular Vector Decomposition process. The iterative pro-
cess may be repeated a number of times equal to a prede-
termined user-selected iteration number.

According to another aspect of the present invention, in
some embodiments one an article of manufacture for recon-
structing an image based on a learned tight frame comprises
a non-transitory, tangible computer-readable medium hold-
ing computer-executable instructions for performing one or
more of the methods described above. For example, in one
embodiment, these instructions may be for performing a
computer-implemented method for learning a tight frame
which includes acquiring undersampled k-space data over a
time period using an interleaved process. An average of the
undersampled k-space data is determined and a reference
image is generated based on the average of the under-
sampled k-space data. Next, a tight frame operator is deter-
mined based on the reference image. Then, a reconstructed
image data is generated from the undersampled k-space data
via a sparse reconstruction which utilizes the tight frame
operator.

Other embodiments of the present invention include an
imaging system for reconstructing an image based on a
learned tight frame. The system comprises at least one RF
(Radio Frequency) coil, a magnetic field gradient generator,
and at least one computer. The magnetic field gradient
generator is configured to generate anatomical volume select
magnetic field gradients for phase encoding, and use the RF
coil to acquire undersampled k-space data over a time period
using an interleaved process. The at least one computer is
configured to: determining an average of the undersampled
k-space data, generate a reference image based on the
average of the undersampled k-space data, determine a tight
frame operator based on the reference image, and generate
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a reconstructed image data from the undersampled k-space
data via a sparse reconstruction which utilizes the tight
frame operator. In one embodiment, the interleaved process
samples lines of k-space data at a predetermined sampling
rate.

Additional features and advantages of the invention will
be made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the present invention
are best understood from the following detailed description
when read in connection with the accompanying drawings.
For the purpose of illustrating the invention, there is shown
in the drawings embodiments that are presently preferred, it
being understood, however, that the invention is not limited
to the specific instrumentalities disclosed. Included in the
drawings are the following Figures:

FIG. 1 shows system for acquiring MR image data, as
used some embodiments of the present invention;

FIG. 2 provides a high-level overview of a tight frame
learning process used in some embodiments of the present
invention;

FIG. 3 illustrates an MRI acquisition process for gener-
ating reference images, as used in some embodiments of the
present invention;

FIG. 4 illustrates one method of constructing a tight frame
based on a reference image, as used in some embodiments
of the present invention;

FIG. 5 provides examples of learned filters used for
generating a tight frame, one or more of which may be used
in embodiments of the present invention;

FIG. 6 provides examples of reconstructed cardiac images
generated by one embodiment of the invention as described
herein; and

FIG. 7 illustrates an exemplary computing environment
within which embodiments of the invention may be imple-
mented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The following disclosure describes the present invention
according to several embodiments directed at methods,
systems, and apparatuses that employ an image reconstruc-
tion process for dynamic MRI. Briefly, the process includes
three steps: obtaining a reference image, learning a tight
frame from the reference image, and applying the learned
operator to the reconstruction. The approach is especially
applicable to reconstructing images with complex anatomi-
cal structure and texture. However, the process described
herein may be utilized in a variety of image reconstruction
applications.

FIG. 1 shows system 100 for acquiring MR image data
(e.g., k-space data), as used some embodiments of the
present invention. In system 100, magnet 12 creates a static
base magnetic field in the body of patient 11 to be imaged
and positioned on a table. Within the magnet system are
gradient coils 14 for producing position dependent magnetic
field gradients superimposed on the static magnetic field.
Gradient coils 14, in response to gradient signals supplied
thereto by a gradient and shimming and pulse sequence
control module 16, produce position dependent and
shimmed magnetic field gradients in three orthogonal direc-
tions and generates magnetic field pulse sequences. The
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shimmed gradients compensate for inhomogeneity and vari-
ability in an MR imaging device magnetic field resulting
from patient anatomical variation and other sources. The
magnetic field gradients include a slice-selection gradient
magnetic field, a phase-encoding gradient magnetic field and
a readout gradient magnetic field that are applied to patient
11.

Further RF (radio frequency) module 20 provides RF
pulse signals to RF coil 18, which in response produces
magnetic field pulses which rotate the spins of the protons in
the imaged body 11 by ninety degrees or by one hundred and
eighty degrees for so-called “spin echo” imaging, or by
angles less than or equal to 90 degrees for so-called “gra-
dient echo” imaging. Pulse sequence control module 16 in
conjunction with RF module 20 as directed by central
control unit 26, control slice-selection, phase-encoding,
readout gradient magnetic fields, radio frequency transmis-
sion, and magnetic resonance signal detection, to acquire
magnetic resonance signals representing planar slices of
patient 11.

In response to applied RF pulse signals, the RF coil 18
receives MR signals, i.e., signals from the excited protons
within the body as they return to an equilibrium position
established by the static and gradient magnetic fields. The
MR signals are detected and processed by a detector within
RF module 20 and k-space component processor unit 34 to
provide image representative data to an image data proces-
sor in central control unit 26. ECG synchronization signal
generator 30 provides ECG signals used for pulse sequence
and imaging synchronization. A two or three dimensional
k-space storage array of individual data elements in unit 34
stores corresponding individual frequency components com-
prising an MR dataset. The k-space array of individual data
elements has a designated center and individual data ele-
ments individually have a radius to the designated center.

A magnetic field generator (comprising magnetic coils 12,
14 and 18) generates a magnetic field for use in acquiring
multiple individual frequency components corresponding to
individual data elements in the storage array. The individual
frequency components are successively acquired in an order
in which radius of respective corresponding individual data
elements increases and decreases along a substantially spiral
path as the multiple individual frequency components is
sequentially acquired during acquisition of an MR dataset
representing an MR image. A storage processor in unit 34
stores individual frequency components acquired using the
magnetic field in corresponding individual data elements in
the array. The radius of respective corresponding individual
data elements alternately increases and decreases as multiple
sequential individual frequency components are acquired.
The magnetic field acquires individual frequency compo-
nents in an order corresponding to a sequence of substan-
tially adjacent individual data elements in the array and
magnetic field gradient change between successively
acquired frequency components is substantially minimized.

Central control unit 26 uses information stored in an
internal database to process the detected MR signals in a
coordinated manner to generate high quality images of a
selected slice (or slices) of the body and adjusts other
parameters of system 10. The stored information comprises
predetermined pulse sequence and magnetic field gradient
and strength data as well as data indicating timing, orienta-
tion and spatial volume of gradient magnetic fields to be
applied in imaging. Generated images are presented on
display 40. Computer 28 includes a graphical user interface
(GUI) enabling user interaction with central controller 26
and enables user modification of magnetic resonance imag-
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ing signals in substantially real time. Display processor 37
processes the magnetic resonance signals to provide image
representative data for display on display 40, for example.

FIG. 2 provides a high-level overview of a tight frame
learning process 200 used in some embodiments of the
present invention. At 205, one or more training images are
acquired, for example, using acquisition protocols which are
similar to dynamic cardiac images. In some embodiments, a
reference image is generated from the acquired data. One
example process of acquiring images is detailed further
below with reference to FIG. 3. Next, at 210, a tight frame
operator is learned from the reference and/or training
images. One example of a process for learning the tight
frame operator is described below with reference to FIG. 4.
Then, at 215, a sparsity enforcing reconstruction is per-
formed using the learned tight frame operator.

FIG. 3 illustrates an MRI acquisition process 300 for
generating reference images, as used in some embodiments
of the present invention. This process may be executed, for
example, using system 100 illustrated in FIG. 1. K-space
data may be undersampled in an interleaved way, as shown
in 305, where plots 305A, 305B, 305C, and 305D each
illustrate the sampled k-space for a given time point. In FIG.
3, acquired data illustrated as solid lines and missing data
illustrated as dashed lines. A pre-determined sampling rate
value may be used to specify how lines of k-space data may
be acquired. In the example of FIG. 3, this sampling rate is
4. The average may be used to generate the mean (fully
sampled) k-space, shown in 310 of FIG. 3. In some embodi-
ments, this average is taken in a temporal direction. The
reference image can then be determined by transforming the
k-space data to image spaces, for example, using a Fourier
transformation technique. It should be noted that the tech-
nique illustrated in FIG. 3 is only one example of a technique
for acquiring reference images. In other embodiments, dif-
ferent sampling patterns or other acquisition techniques may
be used. Moreover, generated images may be stored in a
database or other storage medium for later use in embodi-
ments of the tight frame learning process 200 described
herein.

In some embodiments, the technique 300 utilizes the
temporal Parallel Acquisition Technique (tPAT). In a tPAT
acquisition, alternative phases in the time-resolved sequence
acquire different phase encoding steps. This allows data to
be combined from adjacent frames (or even all frames) in the
time-resolved data to generate a fully sampled coil sensi-
tivity map without the need to acquire additional data.
Let zeCY> ¥ be the tPAT k-space data, and z, JECNX"Ny
be the k-space image from the i” coil at the j* phase, with
iel,2...N_andjel, 2 ... T, where T is the number of time
phases and N, xN,, is the image size or FOV. Let I, JECNX"Ny
represent the data acquisition pattern, with matrix elements
being 1 if the k-space location is acquired and O otherwise.
The k-space data at coordinate (mel, 2 . . . Nx, nel, 2, . ..
N,) of the reference image at the i coil can be derived as:

T

Z zi,j(m, n)
1

29 mm) =2

T
2 I jm, n)
J=1

Let z7%eCYN»*NxT represent the reference k-space data
from all coils. Due to the averaging over all time phases and
the tPAT acquisition pattern, z% is fully sampled. We can
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6

derive the reference image g"“eR by applying 2D Fast
Fourier Transform (“FFT”) to the sum of square of z% over
all coils.

NyxNy,

Once the reference images and/or training images have
been acquired (e.g., via method 300 of FIG. 3), a tight frame
may be learned from the images. More specifically, an
adaptive discrete tight frame can be constructed to form a
tight frame operator W which, in turn, may be used in the
calculations associated with image reconstruction.

As is well understood in the art, signals may be repre-
sented as a basis of vector space, where the signal’s char-
acteristics are presented as a group of transform coefficients.
However, because a basis does not include any redundancy,
any corruption or loss of the transform characteristics will,
in turn, corrupt the representation of the signal. To add
redundancy, an additional counterpart of the signal, known
as a “frame” is used. More specifically, a frame is a set
{£.},_.° of elements of space S which satisfy, for a, be R and
O<asb<oo,

s
allvl? < Z |<v|fi>P <bV? forallve S
i

In this representation, a and b are the lower and upper frame
bounds, respectively. A frame is “tight” if the frame bounds
a and b are equal, such that the frame obeys a generalized
Parseval’s identity. More precisely, {f,},_,* in a Hilbert space
H will satisty:

s
||X||2<Z |<v|x>?forallxe H
;

A tight frame {f;},_,® is an orthonormal basis for H if and
only if ||f||=1 for all f,. Thus, tight frames may be viewed as
generalizations of orthonormal bases. The sequence
{<xIf>} is referred to as the canonical tight frame coeffi-
cient sequence. The two operators related to the tight frame
are the analysis operator W (with rows forming a tight
frame) and the synthesis operator W” which is the transpose
of the analysis operator. The sequence {f;},_,* is a tight
frame if and only if WY W=I where I is the identical operator.

FIG. 4 illustrates one method 400 of constructing a tight
frame based on a reference image. More specifically, the
method 400 determines a tight frame operator W by solving
the following minimization:

ref |2
e = WA, fou oo s XN + Blledlo

min
Wiy

subject to WTW =1

In this equation, there are two unknowns: u, which is the
coeflicient vector that sparsely approximates the canonical
tight frame coefficient Wx'?, and {f,},_,*, which is the set of
filters that generates a tight frame. The method 400 itera-
tively solves for these two unknowns by breaking the
minimization equation set out above into two minimizations
over the two unknowns.
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The method 400 of FIG. 4 begins at 405 where a one
dimensional reference vector, X'¥eR™, is determined
based on a reference or training image. In one embodiment,
the reference vector is determined by concatenating all
columns of the image vertically together. In other embodi-
ments, the reference vector may be determined using other
transformations of the images. Next, at 410, a set of tight
frame filters are initialized. In some embodiments, one or
more standard wavelet filters are used during the initializa-
tion step 410. For example in one embodiment, Haar wave-
let filters are used as the initial frame filters. In other
embodiments, one or more previously learned filters may be
used initialize the tight frame filters at 410. The size of the
filters used during initialization step 410 may be selected
based on factors including, without limitation, the quality of
the signal being processed, the desired fidelity in the recon-
structed image, and the computational capabilities of the
system constructing the tight frame. For example, larger
filter sizes may be used to reduce the time required to
perform image reconstruction while sacrificing fidelity in the
reconstructed image. Conversely, smaller filter sizes may be
used to increase the fidelity of the reconstructed image, but
may require relatively long processing times.

Continuing with reference to FIG. 4, once the initializa-
tion is complete, an iterative minimization process is
executed at 415, 420, and 425. For the purposes of explain-
ing this iterative process, the variable k will be used denote
the current iteration. The number of total iterations per-
formed may be based on a variety of factors. For example,
in some embodiments, the number of iterations is dependent
on a comparison of the change in the resultant data from
iteration to iteration. In other embodiments, the number of
iterations is based on a pre-determined number. In on
embodiment, this pre-determined number is selected by a
user. For example, a user may hard-code the pre-determined
number into the software that performs the minimization
process 400 or, alternatively, the user may provide the
pre-determined number at run-time as an argument to a
software module, function, or method which executes the
process 400.

Continuing with reference to FIG. 4, at 415, an analysis
operator W(k) is derived from the filters {f,},_ * using any
technique known in the art. Next, at 420, a coeflicient vector
u®Y is determined by applying a hard-thresholding opera-
tor T, over the tight frame coeflicients Wx?. In some
embodiments, a soft-thresholding operator is used rather
than hard-thresholding operator Tg. Then, at 425, the filters
{f%+*V),_* are updated based on the coefficient vector. In
one embodiment, the filters are updated based on a singular
value decomposition (SVD). Once the process 400 con-
cludes, a tight frame operator W, defined by filters {f,®},_*
will be available for use in reconstruction.

In the example described in FIG. 4, the algorithm utilizes
a single reference image to learn the tight frame operator W.
However, in other embodiments of the present invention, the
algorithm is extended to learn the operator from multiple
reference and/or training images. Such embodiments may be
applied, for example, in clinical settings where images
associated with multiple patients are acquired or where
multiple images associated with a single patient are acquired
(e.g., in follow-up scans). In these embodiments, the filters
are solved by a SVD of the sum of the matrices from the
hard-thresholding step 420, for each of the training data. In
one embodiment, the minimization formulation is as fol-
lows, with each training data indexed by r:
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N,
e
72 =W e x5 + B llwllo)

"=l

Nm.ln
Iy A

subject to WIW =1

FIG. 5 provides examples of learned filters used for
generating a tight frame, one or more of which may be used
in embodiments of the present invention. These filters result
from a learning process such as process 400 shown in FIG.
4. In FIG. 5, a 2 pixelsx2 pixels filter set 505, a 4 pixelsx4
pixels filter set 510, and a 8 pixelsx8 pixels filter set 515 are
shown. FEach square corresponds to a vector in the set of
filters {f},_,* in the matrix form.

With the learned tight frame, image reconstruction can be
performed. Due to the redundancy of the tight frame system,
the mapping from the signals to the coefficients is not
bijective. Thus, the coefficient vector for representing the
signals is not unique and there may be various approaches
used for signal recovery. For example, in one embodiment,
a synthesis-based approach is used, focusing on representing
the signal through a linear combination of a dictionary. The
corresponding minimization problem in these embodiments
may include a penalty term of the L., (p=0 or 1) norm of the
coeflicients u, enforcing the sparsity of the coefficient vector.
In other embodiments, an analysis-based approach is used,
using the tight frame operator W, where the minimization
problem may again include a penalty term of the L., norm of
the canonical coefficient vector Wx. In another embodiment,
a balanced-approach is used which assumes the underlying
signal x to be synthesized from some sparse coefficient
vector u with x=W7u. As its name describes, the balanced
approach aims to balance the analysis and synthesis based
approaches.

For example, in one embodiment, the reconstruction
process is based on the following minimization:

N,
1

min 53" 1Fu(e; ©0) =yl + AWl
i=1

In this equation, x is a one-dimensional vector which is the
vectorized version of the signal to be reconstructed (e.g., an
image). The vector x may be generated, for example, by
concatenating columns of the signal together vertically. For
dynamic imaging, the signal to be reconstructed is three-
dimensional if the data is a time sequence of two-dimen-
sional images, or four dimensional if the data is a time
sequence of three-dimensional images. N, is the number of
coils used by the MR device. F,, is an operator for image
acquisition which includes Fourier transform and undersam-
pling in k-space. The term ¢, is the coil sensitivity profile for
the ith coil, and y is the acquired k-space data written in the
vectorized form. The regularization term A|[Wx||; is the
l,-norm of the signal in the transform domain, where W
represents the tight frame operator derived, for example, via
process 400 illustrated in FIG. 4.

FIG. 6 provides examples 600 of reconstructed cardiac
images generated by one embodiment of the invention as
described herein. Specifically, FIG. 6 includes a first image
605 showing ground truth at a time phase 1. Image 610
shows a reconstruction from a 8x8 size redundant Haar
wavelet transform of undersampled data at time phase 1.
Image 615 shows a reconstruction from a 8x8 transform of
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the undersampled data at time phase 1, as learned by one
embodiment of the present invention. The differences
between images 610 and 615 and the ground truth image 605
are shown in images 620 and 625, respectively. The learned
transform, as shown in 625 results in less difference from the
ground truth compared to the redundant Haar wavelet trans-
form, as shown in 620.

FIG. 7 illustrates an exemplary computing environment
700 within which embodiments of the invention may be
implemented. For example, this computing environment 700
may be used to implement the method 400 of constructing
a tight frame based on a reference image described in FIG.
4. The computing environment 700 may include computer
system 710, which is one example of a computing system
upon which embodiments of the invention may be imple-
mented. Computers and computing environments, such as
computer 710 and computing environment 700, are known
to those of skill in the art and thus are described briefly here.

As shown in FIG. 7, the computer system 710 may
include a communication mechanism such as a bus 721 or
other communication mechanism for communicating infor-
mation within the computer system 710. The system 710
further includes one or more processors 720 coupled with
the bus 721 for processing the information. The processors
720 may include one or more central processing units
(CPUs), graphical processing units (GPUs), or any other
processor known in the art.

The computer system 710 also includes a system memory
730 coupled to the bus 721 for storing information and
instructions to be executed by processors 720. The system
memory 730 may include computer readable storage media
in the form of volatile and/or nonvolatile memory, such as
read only memory (ROM) 731 and/or random access
memory (RAM) 732. The system memory RAM 732 may
include other dynamic storage device(s) (e.g., dynamic
RAM, static RAM, and synchronous DRAM). The system
memory ROM 731 may include other static storage
device(s) (e.g., programmable ROM, erasable PROM, and
electrically erasable PROM). In addition, the system
memory 730 may be used for storing temporary variables or
other intermediate information during the execution of
instructions by the processors 720. A basic input/output
system 733 (BIOS) containing the basic routines that help to
transfer information between elements within computer sys-
tem 710, such as during start-up, may be stored in ROM 731.
RAM 732 may contain data and/or program modules that are
immediately accessible to and/or presently being operated
on by the processors 720. System memory 730 may addi-
tionally include, for example, operating system 734, appli-
cation programs 735, other program modules 736 and pro-
gram data 737.

The computer system 710 also includes a disk controller
740 coupled to the bus 721 to control one or more storage
devices for storing information and instructions, such as a
magnetic hard disk 741 and a removable media drive 742
(e.g., floppy disk drive, compact disc drive, tape drive,
and/or solid state drive). The storage devices may be added
to the computer system 710 using an appropriate device
interface (e.g., a small computer system interface (SCSI),
integrated device electronics (IDE), Universal Serial Bus
(USB), or FireWire).

The computer system 710 may also include a display
controller 765 coupled to the bus 721 to control a display or
monitor 765, such as a cathode ray tube (CRT) or liquid
crystal display (LCD), for displaying information to a com-
puter user. The computer system includes an input interface
760 and one or more input devices, such as a keyboard 761
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and a pointing device 762, for interacting with a computer
user and providing information to the processor 720. The
pointing device 762, for example, may be a mouse, a
trackball, or a pointing stick for communicating direction
information and command selections to the processor 720
and for controlling cursor movement on the display 766. The
display 766 may provide a touch screen interface which
allows input to supplement or replace the communication of
direction information and command selections by the point-
ing device 761.

The computer system 710 may perform a portion or all of
the processing steps of embodiments of the invention in
response to the processors 720 executing one or more
sequences of one or more instructions contained in a
memory, such as the system memory 730. Such instructions
may be read into the system memory 730 from another
computer readable medium, such as a hard disk 741 or a
removable media drive 742. The hard disk 741 may contain
one or more datastores and data files used by embodiments
of the present invention. Datastore contents and data files
may be encrypted to improve security. The processors 720
may also be employed in a multi-processing arrangement to
execute the one or more sequences of instructions contained
in system memory 730. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions. Thus, embodiments are not lim-
ited to any specific combination of hardware circuitry and
software.

As stated above, the computer system 710 may include at
least one computer readable medium or memory for holding
instructions programmed according embodiments of the
invention and for containing data structures, tables, records,
or other data described herein. The term “computer readable
medium” as used herein refers to any medium that partici-
pates in providing instructions to the processor 720 for
execution. A computer readable medium may take many
forms including, but not limited to, non-volatile media,
volatile media, and transmission media. Non-limiting
examples of non-volatile media include optical disks, solid
state drives, magnetic disks, and magneto-optical disks, such
as hard disk 741 or removable media drive 742. Non-
limiting examples of volatile media include dynamic
memory, such as system memory 730. Non-limiting
examples of transmission media include coaxial cables,
copper wire, and fiber optics, including the wires that make
up the bus 721. Transmission media may also take the form
of acoustic or light waves, such as those generated during
radio wave and infrared data communications.

The computing environment 700 may further include the
computer system 720 operating in a networked environment
using logical connections to one or more remote computers,
such as remote computer 780. Remote computer 780 may be
a personal computer (laptop or desktop), a mobile device, a
server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to computer 710.
When used in a networking environment, computer 710 may
include modem 772 for establishing communications over a
network 771, such as the Internet. Modem 772 may be
connected to system bus 721 via user network interface 770,
or via another appropriate mechanism.

Network 771 may be any network or system generally
known in the art, including the Internet, an intranet, a local
area network (LAN), a wide area network (WAN), a met-
ropolitan area network (MAN), a direct connection or series
of connections, a cellular telephone network, or any other
network or medium capable of facilitating communication
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between computer system 710 and other computers (e.g.,
remote computing system 780). The network 771 may be
wired, wireless or a combination thereof. Wired connections
may be implemented using Ethernet, Universal Serial Bus
(USB), RJ-11 or any other wired connection generally
known in the art. Wireless connections may be implemented
using Wi-Fi, WIMAX, and Bluetooth, infrared, cellular
networks, satellite or any other wireless connection meth-
odology generally known in the art. Additionally, several
networks may work alone or in communication with each
other to facilitate communication in the network 771.

The embodiments of the present disclosure may be imple-
mented with any combination of hardware and software. In
addition, the embodiments of the present disclosure may be
included in an article of manufacture (e.g., one or more
computer program products) having, for example, computer-
readable, non-transitory media. The media has embodied
therein, for instance, computer readable program code for
providing and facilitating the mechanisms of the embodi-
ments of the present disclosure. The article of manufacture
can be included as part of a computer system or sold
separately.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustra-
tion and are not intended to be limiting, with the true scope
and spirit being indicated by the following claims.

What is claimed is:

1. A computer-implemented method for reconstructing an
image based on a learned tight frame, the method compris-
ing:

acquiring undersampled k-space data over a time period

using an interleaved process;

determining an average of the undersampled k-space data;

generating a reference image based on the average of the

undersampled k-space data;

determining a tight frame operator based on the reference

image; and

generating a reconstructed image data from the under-

sampled k-space data via a sparse reconstruction which
utilizes the tight frame operator,

wherein determining a tight frame operator based on the

reference image comprises:

determining a reference vector based on the reference

image;

initializing one or more tight frame filters using an

existing tight frame system; and

performing an iterative process comprising:

defining an analysis operator based on the tight frame

filters,

determining a coefficient vector comprising a plu-
rality of tight frame coefficients by applying the
analysis operator to the reference vector,

updating the coefficient vector by applying a hard
thresholding operator to the tight frame coeffi-
cients, and

updating the tight frame filters based on the updated

coeflicient vector.

2. The method of claim 1, wherein the interleaved process
samples lines of k-space data at a predetermined sampling
rate.

3. The method of claim 1, wherein the average of the
undersampled k-space data is determined in a temporal
direction based on the time period.
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4. The method of claim 1, wherein generating the refer-
ence image based on the average of the undersampled
k-space data comprises:

applying a Fourier transformation to the average of the

undersampled k-space data.

5. The method of claim 1, wherein determining the
reference vector based on the reference image comprises:

concatenating columns of the reference image vertically

together to yield the reference vector.

6. The method of claim 1, wherein the tight frame filters
are updated using a Singular Vector Decomposition process.

7. The method of claim 1, wherein the iterative process is
repeated a number of times equal to a predetermined user-
selected iteration number.

8. The method of claim 1, wherein the tight frame
operator is used as a regularization term in the sparse
reconstruction.

9. The method of claim 1, wherein the tight frame
operator is further determined based on one or more addi-
tional reference images.

10. An article of manufacture for reconstructing an image
based on a learned tight frame, the article of manufacture
comprising a non-transitory, tangible computer-readable
medium holding computer-executable instructions for per-
forming a method comprising:

acquiring undersampled k-space data over a time period

using an interleaved process;

determining an average of the undersampled k-space data;

generating a reference image based on the average of the

undersampled k-space data;

determining a tight frame operator based on the reference

image; and

generating a reconstructed image data from the under-

sampled k-space data via a sparse reconstruction which
utilizes the tight frame operator,

wherein determining a tight frame operator based on the

reference image comprises:

determining a reference vector based on the reference

image;

initializing one or more tight frame filters using an

existing tight frame system; and

performing an iterative process comprising:

defining an analysis operator based on the tight frame

filters,

determining a coefficient vector comprising a plu-
rality of tight frame coeficients by applying the
analysis operator to the reference vector,

updating the coefficient vector by applying a hard
thresholding operator to the tight frame coeffi-
cients, and

updating the tight frame filters based on the updated

coeflicient vector.

11. The article of manufacture of claim 10, wherein the
average of the undersampled k-space data is determined in
a temporal direction based on the time period.

12. The article of manufacture of claim 10, wherein
determining the reference vector based on the reference
image comprises:

concatenating columns of the reference image vertically

together to yield the reference vector.

13. The article of manufacture of claim 10, wherein the
tight frame filters are updated using a Singular Vector
Decomposition process.

14. The article of manufacture of claim 10, wherein the
iterative process is repeated a number of times equal to a
predetermined user-selected iteration number.
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15. The article of manufacture of claim 10, wherein the
tight frame operator is used as a regularization term in the
sparse reconstruction.

16. The article of manufacture of claim 10, wherein the
tight frame operator is further determined based on one or 5
more additional reference images.
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